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Magnetohydrodynamic flows of non-equilibrium plasmas 

By ARTHUR SHERMAN 
General Electric Space Sciences Laboratory, Valley Forge, Pennsylvania 

(Received 21 July 1965) 

The present paper studies the interaction between non-equilibrium ionization 
phenomena in a plasma and the non-uniform flow of that plasma. The charac- 
teristics of non-equilibrium conditions are reviewed for the uniform flow situation 
in which electric and magnetic fields may exist. In  order to permit study of the 
non-uniform flow situation a single-fluid theory is proposed in which the electrical 
conductivity is assumed to be a function of the absolute magnitude of the current 
density. The resulting highly simplified system of equations are then used to 
formulate the Hartmann-flow problem. For this case the formerly linear problem 
becomes non-linear. Despite this, solutions to within a quadrature are obtained 
when the Hall effect is neglected. The more complex problem including the Hall 
effect is solved numerically. Solutions showing velocity and current profiles are 
given. For certain values of the parameters governing the problem it is shown 
that no solutions exist. 

1. Introduction 
The principal objective of the present study is to examine the coupling between 

non-equilibrium ionization in a plasma and the non-uniform flow of that plasma. 
By non-equilibrium ionization we will mean a condition in a plasma wherein the 
electrons and heavy particles are at different average energies or temperatures, 
and the degree of ionization is greater than would exist at the gas temperature 
under thermal ionization. Since this non-equilibrium state depends on the local 
electric field (neglecting finite recombination and ionization rates), and this local 
field Einduced depends on the flow velocity through the term v x B in Ohm’s 
law, it is apparent that some coupling will occur in a non-uniform flow. 

As is well known, an electric field applied to a static plasma will raise the 
electron temperature and increase the degree of ionization. The energy lost in an 
elastic collision between an electron and heavy atom can be expressed as 

(1) 

where T is the bulk gas temperature, T, is the electron temperature, k is Boltz- 
mann’s constant, and mJm, is the electron- to atom-mass ratio. For higher 
electron temperatures an appreciable fraction of collisions may be inelastic, so 
that photon emission due to de-excitation of the resulting excited states may 
constitute an additional energy loss if the radiation is not trapped. For the time 
being we shall assume that all such radiation is trapped so that (1) represents all of 
the energy lost. If we then multiply the above by the electron density n, and the 

A€ = 2(m,/m,) ($kTe- $kT), 
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electron collision frequency v,, the resulting product represents the total energy 
loss per unit volume and time. Equating this to the energy transferred into the 
plasma by the electric field j . E we have 

where 6 is a constant equal to one for elastic collisions but greater than one for 
inelastic collisions with polyatomic molecules in which rotational and vibrational 
degrees of freedom can be excited, and j is the current density.? 

From an expression of this sort, some estimate of the electron temperature 
may be obtained provided the state of the plasma is known. However, the state 
of the plasma is not known, since n, depends on T,  as well as the gas conditions. 
The functional relationship between n, and T, is given by the Saha relation 
evaluated a t  the electron temperature rather than the gas temperature. Thus, 
we have 

where no is the neutral atom density, I the ionization potential, g the statistical 
weight, and h the Planck constant. The approximations inherent in using the 
Saha equation in this way, as well as the energy balance of (2), are discussed in 
Sherman (1964). 

When a magnetic field exists as well as a flow, ( 2 )  still applies locally within the 
plasma if E is interpreted to be the electric field in the frame moving with the 
local fluid velocity E* = E + v x B. 

Having established the physical nature of the non-equilibrium ionization 
phenomenon, and the method of describing it locally in a plasma, it is necessary 
to turn our attention to the equations describing the corresponding flows. From 
the Boltzmann equation the species mass, momentum, and energy conservation 
equations can be derived, and from these one can formulate a single-fluid theory 
which still permits inclusion of the Hall effect and non-equilibrium ionization (cf. 
Sherman 1964). 

We first have the equations for mass and momentum conservation, 

and 

(aplat) + v. (pv) = 0, 

p(Dv/Dt) + V p  = j x B +,uV2v, 

where p is the mass density, p the plasma pressure, and p the plasma viscosity, 
and we are neglecting the electric body force as well as current flow due to the 
transport of excess charge. 

It should be noted that, although the electron temperature has not entered the 
momentum equation explicitly, we have not yet related j to any of the other 
variables. When we do this we shall find an electrical conductivity entering the 
equations. It will be in the magnitude of this conductivity that the electron 
temperature will play its essential role and couple to ( 5 ) .  

t We must observe here that ( 2 )  is a simplified version of the complete partial differential 
equation governing the electron energy, I n  its present form ( 2 )  neglects electron energy 
convection, conduction, flux due to diffusion of electron enthalpy, and viscous dissipation. 
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When the species-momentum equations for electrons, ions and atoms are 
simplified by assuming the ions move at the atom velocity, and neglecting 
gradients in electron partial pressure, a ‘generalized’ Ohm’s law can be derived 
(Cowling 1956): 

where (T = e2ner/me is the plasma conductivity, r being the collision time. Clearly, 
since n, and r depend on T,, we find r to be a function not only of the overall 
properties of the gas but of T, as well. 

To complete the formulation of the single-fluid equations, one needs a partial 
differential equation governing the energy of the plasma as a whole. In  the present 
analysis, however, our principal interest will be in the coupling between the non- 
equilibrium ionization and the non-uniform flow. We shall, accordingly, omit the 
overall energy equation and assume the flow incompressible. In  doing this we 
are, of course, neglecting the influence of overall plasma heat transfer on the 
magnetohydrodynamic flow. However, this assumption is quite necessary at this 
stage of our knowledge, as the complete problem would be much too complex. 
None the less, it must be remembered that we are not neglecting all effects of 
energy transfer since we are still allowing electrons to gain energy in the electro- 
magnetic field and lose it in collisions with heavy particles. 

Within the above assumptions, a simplified single-fluid theory can be obtained 
by assuming the electrical conductivity in (6) to be a function of the current 

(7)  
density alone : 

At the same time we assume the coefficient of the last term in (6), that is alen,, 
to be constant, which is essentially the same as assuming a constant wr = uB/en,. 

Making both of the above assumptions allows us to use a single-fluid theory to 
describe non-equilibrium ionization where the only new feature is to allow (T to be 
a function of j. 

The basis for assuming (T = u( I j I ) and wr constant will be treated in the next 
section. 

j = ( T ( E + ~  x B - (Ilene) j x B), (6) 

= 4 j l ) .  

2. Conductivity approximation 
If we neglect flow variations with position or time (2) gives us arelation between 

the electron temperature and the electric field. Thus 

j .E* = 3n,uek(m,/ma)(T,-T), 

assuming 6 = 1. Using Ohm’s law (6) to eliminate E*, we can then write 

j2/r = 3n, u, k(m,/m,) (T, - T ) .  

However, from the simple kinetic theory we know 

(T = e2n,/m,u,, 

so that combining (8) and (9) we have 

j2 = 3e2n: k(T,  - T)/ma, 
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which is one relation between the electron temperature, the current density, and 
the electron density. The other relation between electron density and electron 
temperature is the Saha equation (3). By substituting n, from (3) into (10) we get 

In  principle then we could solve (1 1) for T, = T,( I j I ). Then using this relation in 
(8) we could obtain n, = n,( I j I ). Finally, substituting ne = n,( I j I )  into the con- 
ductivity expression (9), and since ye = y,(%), substituting also from Te = %( Ij I )  
we can in principle obtain an expression for u as a function of the absolute 
magnitude of the current density. Thus 

Also, for weakly ionized gases cr is essentially proportional to n,, and we have 
for a uniform magnetic field 

or = uB/en, = const. 

In  practice wr is not precisely a constant. However, it is a much less sensitive 
function of the non-equilibrium state than u is, so that this should be areasonable 
approximation. 

Next, we consider the important question as to whether or not a simple func- 
tional dependence may be chosen for u(lj1). Based on recent experimental 
measurements (Zukoski, Cool & Gibson 1964) shown in figure 1 it would seem 
reasonable for current densities greater than 1.0 amp/cm2 to assume 

u = dI j [ ”  (O<n< 1).  

On the other hand, for very low current densities it would seem reasonable to 

u = u,+cIj l .  
assume (cf. Sherman 1964) 

Thus, we are now in a position to formulate the channel-flow problem with a 
simple u( I j I ) relation, and look for solutions with a minimum of complexity. 

3. Hartmann flow 
Having evolved a sufficiently simple system of equations for the description of 

non-equilibrium phenomena in a magnetohydrodynamic flow, and having 
discussed the validity of the simplification, we next turn our attention to the flow 
problem using these equations. 

Since the physical phenomena are of principal interest in the present study, it 
is appropriate to select the simplest flow problem which still retains the features 
to be studied. Toward this end we have chosen the problem of incompressible 
flow in a constant-area channel for further study. In  the absence of magneto- 
hydrodynamic effects this is usually referred to as Poiseuille flow. With a 
magnetic field applied but no unusual phenomena present, it is called the 
Hartmann flow. Then, if the Hall effect is included in the formulation, the 
problem can still be solved analytically (Sherman & Sutton 1961). That is, for 
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all of the flows mentioned the equations, which include viscous effects, are linear 
so that simple solutions are possible. 

The present work will treat the Hartmann flow when cr is a function of 1 j[. The 
analysis will proceed in two steps. I n  the first, the Hall effect will be neglected 
since it is only in this case that simple solutions will be possible. The second will 
consider the full problem, with Hall effect, which must be solved numerically. 
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FIGURE 1. Electrical conductivity as a function of current density for a seeded argon 
plasma (after Zukoski etat .  1964), showing the theoretical curve for a ratio of potassium nK 
to argon nA of 0.0045 at an argon temperature of 2000 O K .  Experimental points: 0, 
nK/nA = 0.0047; A,  nK/nA = 0.0041; 0, nK/nA = 0-0042; x , nK/nA = 0.0042. 

The primary advantage of solving the problem in the absence of Hall effect is that  
qualitative indications of the behaviour of non-equilibrium plasma flows can be 
obtained from analytical solutions to serve as a guide for the more difficult 
solutions. 

I n  general, if E = kuB, then one can show from (2) that 

T,/T = 1 + +?( 1 - k)2 ( 0 7 ) 2  M2, 

where M is the Mach number. Now, from other work (Sherman & Sutton 1961) 
we know that the flow is relatively little affected for values of w7 of one or less. 
Similarly, compressible effects may be neglected when M is 0.3 or less, so that 
significant increases in T,  above T only occur when k 7 3. In  a generator 0 < k < 1 
so that our first problem when applied to a generator will not be strictly realistic. 
It is interesting to observe, however, that for an accelerator k > 1, and the first 
problem may have a real physical counterpart if k > 3. None the less, this first 
problem is primarily useful for the guidance it lends to the solution of the more 
complex case with Hall effect. 

40 Fluid Mech. 2 5  
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The channel geometry for the problem to be considered is shown in figure 2. 
In  order to proceed with the analysis for the case in which the Hall effect is 
neglected, it is assumed that all variables are functions of z alone except for p ,  
which may be a function of x. In  addition, the following assumptions regarding 
the variables are made 

v = (%o,o), j = (o,j,,O), 

€3 = (bZ7 0, &), E = (0, E,, 0). 

Y *  

Y 

Insulators 

Electrode L - - - L - -  
Electrode 

power 

FIGURE 2. Channel geometry and co-ordinate system for 
Hartmann channel flow. 

It should be noted that in the present problem it would be simple to calculate the 
induced magnetic field since it is not coupled to the 00w problem. As our principal 
interest is in the latter, we shall not do so. 

The basic equations were developed earlier and are repeated here for con- 
venience. 

j = c r ( E + v x  B), 

v.  ( p v )  = 0 

p(Dv/Dt) + V p  = j x B +,uV2v. 

With the assumed form of the variables, these reduce to 
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where apjax is assumed constant. For convenience we shall define the following 
dimensionless variables 

P, = ~ % ) l a x ,  Z = z/a, J, = j,/cro uo B,, 
P 4 b  

U = u/uo, k = E,/u, B,, 

where u, is the flow velocity a t  the centre of the channel. 
With these new variables (15)  and (16) become 

and 

where R, = pu,a/p, HZ = cro Bi a2/p. The two alternative forms for the functional 
dependencies of cr( ljl) were noted earlier. They were 

cr = dlj,ln, and u = cro+clj,l. 

In  dimensionless form they become 

and 

where cr = cu, B,. For the initial portion of this analysis we will restrict ourselves 
to the linear law (20). 

Combining (20) with (18) we have 

J,= ( l + c r l J , \ ) ( k - U ) ,  

J, = (1 ~ C ' J , )  (k- U ) ,  or, alternatively 

where we choose the upper sign when k > U ,  the lower sign when k < U .  Solving 
for J, gives k- U Jv = _______ 

1 Tc ' ( k -  U ) '  

It is interesting to observe that there is a limitation to the numerical value that 
cr may assume. If it  is assumed that Ohm's law in the frame moving with the fluid 
must be obeyed, then the current density must have the same sign as the electric 
field (k- U ) .  However, in (23) we see that, whenever c' Ik- UI > 1, we shall have 
J, and (k- U )  of opposite signs. Since this is a contradiction of Ohm's law, we 
must restrict numerical values of c' to 

On the other hand, when cr I k - U I N 1, the current density can be expected to 
approach infinity. The precise behaviour under these conditions will be clear 
from the solutions to be developed later. We can deduce, however, that attempts 
to apply or induce electric fields larger than I/c' will cause an interaction with the 
flow which will destroy the steady laminar flow assumed here. 

Returning to our equations we combine (17) and (23) to get 

(24) 

40-2 
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where the boundary conditions are 

U(  If: 1) = 0, U ( 0 )  = 1, U’(0)  = 0. 

The integration of this non-linear differential equation will depend, in part, on 
the range of U involved if 0 < k < 1 ,  since it changes its form when U is greater 
or less than k.  Accordingly, the region of integration (treating U as the inde- 
pendent variable) must be split into 0 < U < k and U > k. We then have 

The integration of the first of these proceeds as follows: 

then 
(dU/dZ)2 = 2ReP, U + 2 H z  U/~’-2(H;/c’~) ln( l -~’ (k-  U)}+K,. (27 )  

The constant K ,  can only be evaluated when we know the value of dUldZ for 
some value of U between 0 and k .  The integration of the second equation proceeds 
in a similar manner. Thus 

(dU/dZ)2 = 2ReP, U - 2 H t  U/c‘-2(H:/~‘~)ln{l+c‘(k- U)}+K,. ( 2 8 )  

For this case we can evaluate K ,  since we know that when U = 1 we have 
dU/dZ = 0. Thus, 

K ,  = - 2R,  Px+ 2(H;/c’) [ 1 +  (l/c’) In (1 + c ’ (k -  l)}]. 

Now we are in a position to evaluate K ,  since we can calculate dU/dZ when 
U = k .  Thus K,  is found to be 

K ,  = 2(ReP,-H3c’) (k- 1)-2k(R,P,+H~/c’)+2(H2,/~‘~)1n(l t-c’(k-1)).  

With the constants K ,  and K ,  known, (27 )  and ( 2 8 )  become for 0 < U < k 

2 ( R ,  P, - H:/c’) ( k  - 1) + 2(  U - k )  (Re P, + H:/c’) 
dZ 

(29 )  
- 2(H;/ct2)1n {---)] 1 - c ’ ( k - U )  4 

1 + c ’ ( k -  1)  ’ 
and for k < U < 1 

The complete solution is then 

dU z+1= 
( k - 1 ) + 2 ( U - k ) ( R , P x + ~ ) - d a l n ( 7 - - -  2H: 1 - c ‘ ( k - U )  

1-c  ( 1 - k )  
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As the integral now stands an integration in closed form has not been found. 
A numerical integration is not simple for two reasons. First, of the four parameters 
involved (Re P,, H i ,  c’ ,  k) only three can be arbitrary since one is needed to satisfy 
the condition that Z = 0 when U = 1. When carrying out an analytical solution, 
this functional dependence can be determined once the dimensionless velocity 
profiles are calculated. For the present situation an iterative procedure must be 
followed. That is, with k ,  c‘ and H t  fixed Re P, must be varied until the integrals 
in (31)  evaluated at  U = 1 equal unity (2 = 0) .  Having carried out such an 
iterative procedure we have both the desired value of Re P, for given k, c’, and H i  
as well as the solution to the flow problem. 

1 *o 

0 8  
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3. 
6 0.6 
.i 

2 
3 

2 0.4 

0 2  

9 e 

0 0.2 0.4 0.6 0.8 1 *o 
Flow velocity ( U )  

FIGURE 3. Axial velocity in the absence of the Hall effect for a short-circuited channel, 
k = 0, Ha = 2, as a function of the non-equilibrium parameter (u = r,,+clj( assumption). 
-, c’ = 0, R, P, = - 5.46, and c‘ = 0.2, R, P, = - 6.43; ----, C‘ = 0.5, R,P, = - 8.92; 
_ _  , C’ = 0.9, Repz = -40.0. 

The second difficulty is the singular nature of the second integral in ( 3  1) when 
U +  1. The first question to be raised is, does this integral converge at all? 
Secondly, if it  does converge, is it possible in general to find a value of Rep, for 
which Z = 0 when U = 1 Z The first question can be answered in the affirmative 
by the use of the comparison test. The second question is more subtle. It has 
only been studied in detail for the k = 0 case. Considering (31) we recognize that 
solutions cannot exist for selected values of c‘ and Ha if Re P, is such as to cause 
the argument of the square root to be negative for any value of U between zero 
and one. However, even if Re P, is such as to cause the argument to be positive for 
all values of U ,  it  is still not certain that 2 will approach zero as U + 1. Now, 
when 2 --f 0 and U --f 1, we see from (31) that the integral from zero to one must 
be unity for a solution to exist. If the critical value of Re P, (a negative number) 
required to keep the integrand just real also makes the integral from zero 
to one less than unity, then there can be no solution. This occurs, since making 
Rep, more positive makes the integrand imaginary, while making it more 
negative decreases the value of the integral. However, a solution does exist if the 
critical value of Re P, yields an integral from zero to one greater than or equal to 
unity. 
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By use of the comparison test one can verify that for some cases solutions do 
not exist. These are in fact those cases for which no calculations have been 
reported. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Flow velocity ( U )  

FIGURE 4. Axial velocity in the absence of the Hall effcct for a short-circuited channel, 
k = 0, H ,  = 3, as a function of the non-equilibrium parameter (a = go + clj I assumption). 
-, c' = 0, Re P, = - 10.0, and c' = 0.2, Re P, = - 12.2; - - - - , C' = 0.5, Re P, = - 18.4. 

0 - 2  -4 - 6  - 8  -10 -12 -14 
Current density (J , )  

FIGURE 5. Transverse current in the absence of the Hall effect for a short-circuited channel 
with Ic = 0 and H ,  = 2 as a function of the non-equilibrium parameter (a = a,,+cljl 
assumption). 

Having verified the convergence of our integral we have carried out numerical 
integrations for several cases of interest. The velocity profiles for these cases are 
shown in figures 3 and 4, and the current density profile for the Ha = 2 case is 
shown in figure 5. The curves for c' = 0 were very close to the curves for cf = 0.2, 
and no solution was possible for Ha = 3, cf  = 0.9. 
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In  general, we find that, if cJ N 1, the velocity profile becomes very full. Also, 
in all cases, increasing c' from zero tended to fill out the velocity profile. 

From the current distributions we recognize the nature of the current density 
behaviour when c' -+ 1 / ( k -  U [ .  That is, as cJ approaches this limit the velocity 
profile tends to become square and the current density tends to become infinite 
all across the channel. 

The axial pressure gradients are a last point of interest. We observe that they 
become quite large as GI approaches its limiting value. 

Turning our attention next to the case where 

u- = GR I JJ", 

J, = (u-R/u-O) IJ,I"(k- U ) .  

we can substitute this in (18). Then we get 

(32)  

Jv = ( c ~ ~ / u - ~ ) ~ l ( ~ - m )  (k - U)lI(l-n) for U < k, (33)  

Jv = - (~r~/u-~)O)'"l-") ( U  - k)lI(l-m) for U > k. (34)  

To solve for J,, we have to restrict U to less than or greater than k. Thus 

From this new Ohm's law we can again draw some interesting conclusions even 
before solving any flow problem. We note that now we have the two parameters 
crR and n specifying the non-equilibrium ionization phenomena rather than the 
one c' as before. We might anticipate that n rather than crR plays the major role. 
That it does is verified by our equations (33) ,  (34)  which show that, when n = 1, 
we find Jv either infinite or indeterminate so that this is our limiting value now. 
On the other hand when n = 0 we have u- = const. and obtain a Hartmann 
flow so that n must lie between 0 and 1.  If crR = 0 though, we have u- = 0,  the 
Lorentz force is zero, and we find a Poiseuille flow. 

Proceeding to the solution we combine (33) ,  (34)  with (17 )  and integrate once 
to get 

h 

where H i  = ( ~ T ~ / v , , ) ~ / ( ~ - " ) H ~ .  

Clearly, when n = 4 or $, we are led to elliptic integrals when we complete the 
solution. For other values of n we must complete the solution by numerical 
quadratures as before. As an illustration let us consider n = fr. Using the same 
method as the previous case to determine K ,  and K ,  we find for n = 4 

K ,  = $&(k- 1 1 3 -  ~R,P,  = K,. 

d U  
[~R,P,(u- i ) - + & { ( ~ -  u j y k - - 1 ) 3 } p  

d U  
[~R,P,(u- i)-$B:{(k- u)3-(k- 1)3}]4 

(37)  

Integrating with respect to U we then obtain from (35)  and (36)  

for U < k, (38)  

for U > k. (39)  

dZ = 

dZ = - 
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Since (38) and (39) are identical, it is not necessary to restrict U so that the 
complete solution is 

(40) __ U dU 
+ = so [ZR, P,( u - 1) - @;{(k - U)3 - ( k  - 1)3)]4’ 

The integral can clearly be expressed as elliptic integrals and the solution is 
completed. Of course, iteration must be used to determine Re P, as before. 

In  order to illustrate the procedure, we shall carry out calculations for the k = 0 
case. In this instance (40) can be rewritten in a standard form for elliptic integrals. 

dU 
Thus 

4 

0.4 - 

0.2 - d 

0 0.2 0.4 0.6 0.8 1.0 
Flow velocity ( U )  

FIGURE 6. Axial velocity in the absence of the Hall effect for a short-circuited channel, 
k = 0, as a function of the non-equilibrium modified Hartmann number (a = aRI j I&  

assumption). For A, = 0, Re P, = - 2.00; &, = 2, Re P, = - 5.20; 6, = 3, Re P, = - 9.67. 

where 

and 

Of course, F ( a ,  4) is the elliptic function of the first kind and is a tabulated 
function. 

Carrying out the mentioned iteration we find solutions for Ha = 2 ,  3 .  Curves of 
the resulting velocity and current density profiles are shown in figures 6 and 7.  
Now since Ha = (gR/g0)  Ha, where v., = d J(aouo B )  we can interpret an increasing 
value of as an increase in the constant d with Ha constant. As one might have 

h 
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anticipated, increasing makes the velocity profiles fuller. This could be inter- 
preted either as due to an increase in the normal Hartmann parameter Ha or as 
due to a larger non-equilibrium effect, d. As before, when the parameter Ba 
increases and the velocity profiles become fuller, the pressure gradient becomes 
a larger negative number. 

0 - 0 2  - 0 4  - 0 6  - 08 - 1.0 

Current density J,/(UR/Uo)2 

FIGURE 7. Transverse current in the absence of the Hall effect for a short-circuited channel, 
k = 0, as a function of the non-equilibrium modified Hartmann number (a = u R j j l 4  
assumption). 

4. Hartmann flow with Hall effect 
Up to this point the Hall effect has been left out of the problem for simplicity. 

However, for most applications non-equilibrium ionization occurs most readily 
at lower pressures, and this is precisely the condition under which the Hall effect 
must be accounted for. The inclusion of both phenomena will now be considered. 

First, it must be recognized that a cross-flow will exist (Sherman & Sutton 
1961) so that v = (u, v, 0) and j = (jx,jy, 0) .  In this case the two components of the 
momentum equation become 

The principal difficulty will be in expressing j ,  and j ,  in terms of u and v as well 
as the other parameters of the problem. Now from our ‘generalized’ Ohm’s law 

j = r{E + v x B - ( w ~ / r B , )  j x B), 
we can show readily 
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Assuming the linear law for ( ~ ( 1  jl), the generalization for the present problem is 

fT = fT,+c J(jE+jE). (46) 

Substituting this into (44) and (45) and solving for j, and j, we get 

(47) 
. (7 {(E,+uB,) -W7(E,-UB0)}/{1 ~ - _ _ _  + ( w r y }  3 = -0 

1 - c{(E,+ uB,)2+ (Ezt - uB,)2)+/{1+ (W7)2}+' 

Substitution of these expressions in (41) and (42) then gives us the desired two 
equations for u and u. If we introduce dimensionless variables as before, we get 

(50)  
d2V H2,{(€,+ V ) - W T ( k -  U ) } / { l +  ( w r y )  
__ = Re Pg + 
dZ2 1 - c'{(&, + V)Z + ( k  - U)2)3/{1+ (or)2P' 

and the boundary conditions are 

U(  & 1) = 0, V (  * 1 )  = 0, 

U ( 0 )  = 1, V'(0)  = 0, 

U'(0 )  = 0, 

I n  order to complete the formulation of this problem, we note that we must 
require that 

j-olJ,dz = 0, 
J O 1  

V d Z  = 0. 

That is, there is neither any net current flow downstream nor any net mass flow 
cross-wise. As before, we shall select the parameters k, c',  or, Ha. The adjustable 
parameters are now Re P,, Re P,, gZ. They are determined by the two integral 
conditions above, and the d V/dZ (2 = 0 )  condition. Before discussing the solution 
of (49) and (50), we should comment on their form. First, when c' -+ 0 the well- 
known Hartmann-flow problem is recovered. Also, as before, for some choice of 
C' the current density tends toward 00, although now the permissible value is 
larger for larger or values. Finally, when or = co, the non-equilibrium pheno- 
mena disappear, and we obtain the result thatj,  = 0 andj, = const. (Sherman & 
Sutton 1961). 

The solution of the coupled non-linear set of equations for U and V was carried 
out on an analogue computer, since we were faced with a two-point boundary- 
value problem with a threefold iteration. The read-out from the computer was 
placed on an oscilloscope, and the three arbitrary parameters were adjusted 
manually until the desired conditions were met, Using this technique, the cases 
given in table 1 were calculated for Ha = 3. Curves showing the velocity profiles 
for some of the cases are presented in figures 8 and 9. Based on these results a 
number of interesting observations can be made. First, as before, increasing c' 
increases the axial pressure gradient when k = 0, 0.5, and in some cases leads to 
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no solutions being possible. Also, 11 transverse pressure gradient now exists to keep 
the net cross-wise flow zero. It is largest when the cross-flow velocity is greatest. 
As expected, an axial electric field exists to keep the net axial current flow zero. 
It is largest when WT = 10. 

k W T  C' Re. p, &PIJ 85 
0 1 0.5 - 16.10 - 04'04 - 0'802 
0 10 0.5 - 11.30 -0.190 - 6.72 
0 10 0.9 - 18.62 - 0'314 - 6.86 
0.5 1 1 - 7.17 - 0.712 - 0.277 
0.5 10 1 - 3.93 - 0.147 - 1.71 
0.5 10 1.9 - 4.44 - 0.183 - 1.74 

TABLE 1 
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FIGURE 8 

-004-002 0 002 004 

Cross-flow velocity ( V )  
FIGURE 9 

FIGURE 8. Axial velocity with the Hall effect for a short-circuited channel, k = 0, Ha = 3, 
c' = 0.5, as a function of WT (u = u,+c/jl assumption). 

FIGURE 9. Transverse velocity with the Hall effect for a short-circuited channel, k = 0, 
H ,  = 3, c' = 0.5, as a function of WT (g=uo+c\ j l  assumption). 

From the flow profiles we note that the axial flow becomes more parabolic as 
wr increases, which confirms our earlier results for the c' = 0 case (Sherman & 
Sutton 1961). Also, the transverse flow is minimized when wr is larger. The 
differences between the WT = 1 and 10 cases have, however, been accentuated 
compared with when c' = 0. Accordingly, when c' is close to its limiting value, 
increasing OT is more effective in limiting the influence of c' than it was before. 

Finally, we consider the case where 

B = d Jljl = d( j ;+j ; ) t .  (51) 

If we substitute this into (44) and (45) and solve for j, and j,, we find 
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Finally, if we substitute these in (41) and (42), we obtain two equations for U and 
V .  They are 

The boundary conditions are the same for this problem and the solution was 
carried out in the same way. The cases considered are given in table 2, and 

k 0)T Rap, R, p!J gz 
0 1 3 - 8.43 - 0-380 - 0.778 
0 10 3 - 6.22 - 0.085 - 6.76 
0.5 1 3 - 2.94 - 0.165 - 0.228 
0.5 10 3 - 2.30 - 0.020 - 1.70 

TABLE 2 

Axial flow velocity ( U )  
FIGURE 10 

Cross-flow velocity ( V )  
FIGURE 11 

h 

FIGURE 10. Axial velocity with the Hall effect for a short-circuited channel, k = 0, H ,  = 3, 
as a function of WT (o= crRljl) assumption). 

FIGURE 11. Transverse velocity with the Hall effect for a short-circuited channel, k = 0, 
k, = 3, as a function of WT (cr=aBljl?t- assumption). 

velocity profiles for some are shown in figures 10 and 11. As before in the 
linear case increasing WT from 1 to 10 tends to make the velocity profile more 
parabolic. The cross-flow velocity profiles are similar to those obtained earlier 
although smaller in magnitude. Also, similar transverse pressure gradients and 
axial electric fields exist as before. 

5. Concluding remarks 
In  the present paper the problem of evaluating the coupling between the non- 

equilibrium ionization effect and a non-uniform flow has been considered. After 
a review of the basic phenomena and the equations describing them it was 
concluded that, if the elevation of the electron temperature can be directly 
related to the current density in a first approximation, then a particularly simple 
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set of equations may be used. In  fact, the familiar magnetohydrodynamic 
equations may be used intact if we only allow a to be a function I j I .  

The essential feature discovered by taking v to be either linear in I j I or varying 
as a power of 1 j 1 is that the degree of non-equilibrium assumed is not arbitrary, 
but is in fact limited. Also, we find that the new Ohm’s law derived by letting 
a = a( I jl) reduces the formerly linear channel-flow problem to a non-linear one. 

Considering the two simplified assumptionsfor the a( 1 j 1 )functional dependence, 
the Hartmann flow was first formulated without consideration of the Hall effect. 
Despite the non-linearity, we showed that this problem can be solved within a 
quadrature. The velocity profiles become fuller the greater the non-equilibrium 
effect and the axial pressure gradients increase. 

Including the Hall effect yields cross-flows and a cross-wise pressure gradient. 
Just as when the non-equilibrium effect is omitted, higher Hall parameters lead 
to more parabolic axial velocity profiles and less cross-flows. Another interesting 
facet arises when the axial Hall voltage is considered. In the absence of the non- 
equilibrium effect the axial Hall potential should be wr (u)B, (cf. Sherman & 
Sutton 1961). When the non-equilibrium effect is included, we then find the Hall 
potential increased by a few per cent (Sherman 1965). 

Most important, however, we have been able to show that, with the single- 
fluid formulation, the coupling between the non-equilibrium effect and the flow 
can be illuminated by the solution of relatively simple problems. 

One must also remember, however, that such simplification has been bought 
at  the expense of numerous assumptions. The two most essential are the neglect 
of energy-transfer effects, and the omission of finite ionization and recombination 
rates. 
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